Разработано и произведено в Украине Разработано и произведено в Украине
Скачивайте наши приложения
Мы в социальных сетях
Каталог товаров
0 Корзина
 x 

Каталог товаров

Контроль прочности бетонов.

 

Прочность на сжатие – является базовым и основным контролируемым параметром такого строительного материала, как бетон. Под прочностью, подразумевается физические свойства, реакция и сопротивление материала по отношению к различным видам разрушений.

В современном строительстве контроль прочности бетона осуществляется несколькими методами:

  • Стандартный метод – заключается в испытание проб, изготовленных из одной и той же смеси, что и подконтрольное изделие. Характеристики подобных образцов могут значительно отличаться от реальных показателей;
  • Метод контроля с использованием выбуренных кернов – дает наиболее объективные результаты, однако является наиболее дорогостоящей и трудоемкой процедурой.

Наиболее востребованными методами являются – методы неразрушающего контроля. Современные приборы контроля позволяют получать объективную информацию без значительных временных издержек и финансовых затрат. К данным методам можно отнести следующие:

  • Ультразвуковой метод;
  • Метод упругого отскока;
  • Метод отрыва стальных дисков;
  • Метод отрыва со скалыванием;
  • Метод ударного импульса.

Естественно стоит учитывать, что для каждого метода существует своя классификация погрешностей, зависящая от различных перечней факторов.

 

Методы неразрушающего контроля. Основное отличие метода от двух предыдущих состоит в том, что при использовании этого метода непосредственно измеряемой величиной является не прочность, а какой-либо физический показатель, связанный с измеряемой величиной корреляционной зависимостью.

Для установления этой корреляционной зависимости, а, значит, и для определения прочности бетона предварительно устанавливают градуировочную (тарировочную) зависимость между прочностью бетона и косвенной характеристикой. Градуировочную зависимость устанавливают для бетонов одного проектного возраста и приготовленных из одинаковых материалов по результатам испытаний на прочность образцов-кубов. Итак, все методы неразрушающего контроля прочности бетона требуют построения индивидуальных градуировочных зависимостей по результатам испытаний стандартных образцов-кубов, изготовленных из бетона такого же состава и возраста, что и испытываемый образец.

На точность измерения прочности при измерении неразрушающими методами могут оказывать влияние такие факторы как: тип цемента, состав цемента, тип заполнителя, условия твердения, возраст бетона, влажность и температура поверхности, тип поверхности, карбонизация поверхностного слоя бетона и еще ряд других менее значимых факторов.

Основных методов НК, основанных на построении индивидуальных градуировочных зависимостей, несколько:

1. Метод пластической деформации основан на измерении размеров отпечатка, который остался на поверхности бетона после соударения с ней стального шарика. Метод устаревший, но до сих пор его используют из-за дешевизны оборудования. Наиболее широко для таких испытаний используют молоток Кашкарова.

2. Метод упругого отскока заключается в измерении величины обратного отскока ударника при соударении с поверхностью бетона. Типичным представителем приборов для испытаний по этому методу является склерометр Шмидта и его многочисленные аналоги. Метод упругого отскока, как и метод пластической деформации, основан на измерении поверхностной твердости бетона.

3. Метод ударного импульса заключается в регистрации энергии удара, возникающей в момент соударения бойка с поверхностью бетона. Представители приборного ряда для испытаний этим методом – склерометры.

4. Метод отрыва со скалыванием и скалывания ребра конструкции заключается в регистрации усилия, необходимого для скалывания участка бетона на ребре конструкции, либо местного разрушения бетона при вырыве из него анкерного устройства. Это самые точные из методов НК прочности бетонов.

          

К недостаткам этого метода следует отнести его высокую трудоемкость и невозможность его использования в густоармированных участках, а также то, что он частично повреждает поверхность конструкции.

5. Метод отрыва стальных дисков заключается в регистрации напряжения, необходимого для местного разрушения бетона при отрыве от него металлического диска, равного усилию отрыва, деленному на площадь проекции поверхности отрыва бетона на плоскость диска. В настоящее время метод используется крайне редко.

6. Ультразвуковой метод заключается в регистрации скорости прохождения УЗ волн. По технике проведения испытаний можно выделить сквозное УЗ прозвучивание, когда датчики располагают с разных сторон тестируемого образца, и поверхностное прозвучивание, когда датчики расположены с одной стороны. 

Метод сквозного УЗ прозвучивания позволяет, в отличие от всех остальных методов НК прочности, контролировать прочность не только в приповерхностных слоях бетона, но и прочность тела бетона конструкции.

Приборы, основанные на методах местных разрушений (методы отрыва со скалыванием, скалывания ребра и отрыва стальных дисков), применяются в основном в монолитном домостроении и при обследовании конструкций зданий и сооружений. Недостатки этих методов, обусловленные повышенной трудоемкостью и необходимостью определения оси арматуры и глубины ее залегания ограничивают их применение определением прочности бетона отдельных конструкций или их участков, а также уточнением градуировочных зависимостей ультразвуковых и ударно-импульсных приборов.

Основные объемы НК прочности бетона выполняются, как правило, высокопроизводительными приборами после установления корреляции их косвенной характеристики (базовой зависимости) с фактической прочностью контролируемого бетона. Для этих целей применяются приборы ударного действия, основанные на методах ударного импульса (упругого отскока, пластической деформации, энергии удара) и ультразвуковые измерители скорости (времени) распространения УЗ колебаний в бетоне.

Контроль прочности ударными и ультразвуковыми методами ведется в поверхностных слоях бетона (кроме сквозного УЗ-прозвучивания), в связи с чем, состояние поверхностного слоя может оказывать существенное влияние на результаты контроля.

Пользователь должен знать, что базовая, либо типовая градуировочная зависимость, с которой может поставляться прибор, с достаточной степенью точности воспроизводит прочность бетона того вида (класса), на котором прибор калибровался. Изменение вида крупного заполнителя, влажности, возраста бетона и условий его твердения приводит к увеличению погрешности измерений. Для ультразвуковых приборов перечень факторов, влияющих на точность измерений, еще шире.

Калькулятор точки росы NOVOTEST DPM LAB фото Калькулятор точки росы NOVOTEST DPM LAB
18000 грн
Цена указана с НДС
Молоток Шмидта (склерометр) МШ-20 фото Молоток Шмидта (склерометр) МШ-20
9780 грн
Цена указана с НДС
Адгезиметр механический АЦ-1 фото Адгезиметр механический АЦ-1
19800 грн
Цена указана с НДС
Твердомер динамический Т-Д2 (c NOVOTEST Lab) фото Твердомер динамический Т-Д2 (c NOVOTEST Lab)
13950 грн
Цена указана с НДС
Механический глубиномер Допуск С-3 фото Механический глубиномер Допуск С-3
6120 грн
Цена указана с НДС
Ультразвуковой дефектоскоп УД2301 фото Ультразвуковой дефектоскоп УД2301
69990 грн
Цена указана с НДС
Толщиномер покрытий ТП-1 фото Толщиномер покрытий ТП-1
9780 грн
Цена указана с НДС
Выберите вариант
Ультразвуковой дефектоскоп УД2303 фото Ультразвуковой дефектоскоп УД2303
81120 грн
Цена указана с НДС
Магнитопорошковый дефектоскоп МПД-DC фото Магнитопорошковый дефектоскоп МПД-DC
4920 грн
Цена указана с НДС
Молоток Шмидта (склерометр) МШ-225 фото Молоток Шмидта (склерометр) МШ-225
9780 грн
Цена указана с НДС
Белая контрастная краска (грунт) MР-35 фото Белая контрастная краска (грунт) MР-35
390 грн
Цена указана с НДС
Откройте для себя уникальные возможности
Прибор в твоём смартфоне | Облачное хранение результатов контроля | Расширение функционала